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Screw dynamo in a time-dependent pipe flow
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The kinematic dynamo problem is investigated for the flow of a conducting fluid in a cylindrical, periodic
tube with conducting walls. The methods used are an eigenvalue analysis of the steady regime, and the
three-dimensional solution of the time-dependent induction equation. The configuration and parameters con-
sidered here are close to those of a dynamo experiment planned in Perm, which will use a torus-shaped
channel. We find growth of an initial magnetic field by more than three orders of magnitude. A marked field
growth can be obtained if the braking time is less than 0.2 s and only one diverter is used in the channel. The
structure of the seed field has a strong impact on the field amplification factor. Generation properties can be
improved by adding ferromagnetic particles to the fluid in order to increase its relative permeability, but this
will not be necessary for the success of the dynamo experiment. For higher magnetic Reynolds numbers, the
nontrivial evolution of different magnetic modes limits the value of simple “optimistic” and “pessimistic”
estimates.
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[. INTRODUCTION namo for spiral Couette flow has been investigated with

asymptotic methods in Refl2] and numerically in Ref.

The screw dynamo is a simple dynamo model that ha§l13].

been extensively studied in dynamo theory. It is based on an We are interested in the screw dynamo problem in the

idea due to Lortz1] and Ponomarenk2], according to  context of a new experimental dynamo projegt The basic

which magnetic field can be generated by the helical motioridea of this project, introduced in Rédfl4], is to realize the
of a rigid, electrically conducting cylinder of infinite length dynamo effect in a strongly time-dependent helical flow. The
through an infinitely extended medium of equal conductivity.flow is generated in a quickly rotating toroidal channel after
This problem implies a simple velocity field and leads to aabrupt braking, and is shown, for a water experiment, in Fig.

critical magnetic Reynolds number as low[83$ 1. This application raises new questions concerning the
screw dynamo, which have not been addressed in previous

studies. In particular, the flow of the conducting fluid will be
Urg located in aclosedchannel and will be supercritical during a
Rm=7=17.7, (D) short time interval only. This requires the solution of the

whereU is the (constank longitudinal velocity of the cylin-
der, rq is its radius, andy is the magnetic diffusivity. This
dynamo model has a discontinuous velocity profile, and will
be referred to as the “Ponomarenko dynamo.” More realistic
models of the screw dynamo, involving continuous and hy-
drodynamically realistic velocity fields, were considered by
several authors. Referencg$,5] develop a very accurate
asymptotic theory for the screw dynamo in smooth flows,
which has been complemented by numerical simulatiéhs
In Ref. [7], this theory is applied to a number of realistic
flows. Reference[8] extended the numerical analysis to
flows fluctuating in time. Other time dependent screw dy-
namo models were presented in R&f] in connection with
the Perm dynamo experiment. Referend€] has put the
screw dynamo into a larger context of slow dynamo mecha-
nisms and Ref[11] has generalized the concept to nonaxi-
symmetric flows. The nonlinear behavior of the screw dy- FiG. 1. Photograph of a water experiment showing streamlines
in an initially spinning torus after abrupt braking. The white object
in the channel is thaliverter, a kind of a fixed ship screw that
*Electronic address: Wolfgang.Dobler@kis.uni-freiburg.de makes the motion strongly helical. From REJ].
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induction equation for three-dimensional geometry in a timeference between flow and exterior can enhance the magnetic
dependent flow. Moreover, in order to understand the saturdield.
tion of the magnetic fieldif it occurs during the experiment Mathematically, dynamo action is characterized by the
one has to investigate the time evolution of the fully nonlin-presence of growing solutior(x,t) of the induction equa-
ear magnetohydrodynamig®HD) equations. The experi- tion
mental scheme also requires strong optimization of the chan-
nel (minimization of its mass under optimal conductivity and
wall thickness.

In this paper we investigate the screw dynamo in a time-
dependent flow using two different methods, which allowsatisfying the solenoidality condition
different questions to be addressed. First, the analysis of the
eigenvalue problem related to the case of a steady velocity V-B=0. 3
field gives insight into the full spectral structure and is nu-
merically the most efficient approach. Our second method—Here B denotes the magnetic flux density,s the velocity
numerical solution of the three-dimensional, space- andield, u, and u, are the magnetic vacuum permeability and
time-dependent problem—is numerically much more dethe relative magnetic permeability of the medium, apds
manding, but it allows us to investigate the full three-the magnetic diffusivity of the fluid, related to the electrical
dimensional structure and is the only approach that has theéonductivity o by = (uou0) 1. The term»V In w=V,
perspective of tackling the nonlinear problem. While the fi-arises if the relative magnetic permeability is a function of
nal goal is to solve the fully nonlinear problem and to in- position and gives rise to what we call “paramagnetic pump-
clude all geometrical and dynamical effects, the present pang” (with an effective velocity,)) of magnetic flux into the
per only discusses the linear phase of magnetic field growtbegions of enhanced permeability. A self-consistent descrip-

B
—- =VX[(v+ 7V Inp)xB-nVxB], 2)

in (periodig cylindrical geometry. tion would also include the Navier-Stokes equation
Most laboratory dynamo projects use liquid sodium as
conducting fluid, which has a magnetic Prandtl number Pm IV Vp jxB

=/ p~10°. This means that, in order to achieve the criti-
cal magnetic Reynolds number of a few tens, one operates at
kinematic Reynolds number of order®aL0/, which is far . .
beyond what can be numerically simulated even on the Iargt_ogether with the condition
est computers. Thus, we cannot solve the dynamical part of
the problem consistently and in the current paper just use
mean velocity profiles as inferred from experiments. ) . ,
The structure of the paper is as follows. Section Il specifor an incompressible fluid. Hene denotes pressure, de-
fies the equations and geometry of the problem addressdtPtes densityj=Vx(B/uqu,) is the electric current den-
here. In Sec. Il we present numerical solutions of the inducSity; and v is the kinematic viscosity. The equations given
tion equation for prescribed, steady velocity profiles similar2Pove are complemented by boundary conditions describing
to those found in cylindrical pipes. If the velocity field is the properties of the wallisee Ref[14]). _ _
axisymmetric and identical in any cross section through the N the present paper, we restrict ourselves tokihematic
cylinder, the problem can be reduced to a one-dimensionglynamo problemi.e., we consider only Eqd2) and (3),
eigenvalue problem that is solved numerically by discretizalSing a given solenoidal velocity fieldx,t) and neglect the
tion. This approach is sufficiently efficient to allow us to magnetic back reaction thrqugh the Lorentz force. This leads
scan the space of relevant parameters and to isolate the ca$@g linear problem ifB and is very helpful to understand the
that will be most favorable for the realization of the experi- €volution for weak and moderately strong magnetic fields.
ment. Section IV presents results obtained with a threeThis approach will allow for optimization of the experimen-
dimensional MHD code solving the induction problem for a tal apparatus in many respects since the kinematic growth of
velocity field that varies in space and time. We finally drawB over several orders of magnitude is necessary for the suc-

some conclusions about the realizability of the planned dycess of the experiment. _ _ -
namo experiment in Sec. V. The turbulent flow of a conducting medium will give rise

to turbulent induction effects, which can be estimated by
mean-field theory. In the present paper, we neglect these ex-
tra terms in the induction equatidf) and refer the reader to
the discussion in Refl5].

The proposed Perm dynamo experimght] will imple- While the curvature of the pipe can be expected to play a
ment a helical, strongly time-dependent flow of liquid so-role for the geometry of the experime(the ratio of outer
dium (Ng;)) through a torus, surrounded by a thin shell of radiusR to inner radiusr, of the torus being about)3we
copper (Cu), the electrical conductivity of which is about currently neglect it by considering a cylindrical pipe instead
five times higher than that of liquid sodium. The role of this of a torus. Connecting the two ends of the cylinder by peri-
conducting shell is to “anchor” the magnetic field lines in odic boundary conditions and setting its lendth=27R,
the exterior frame, so that the shear due to the velocity difwe obtain a reasonable first approximation to torus geometry.

EI—(V-V)V—?—F T‘F vAv, (4)

V.-v=0 (5)

1. FORMULATION OF THE PROBLEM
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dn/d(rb,) im

Na _ LA—
r +dr rdr r r)’ (8)

Cu whereV,= ndIn g, /dr and

I:A)_l d/ d| m’+1 2 o
Trdrldr] T T2 ®

FIG. 2. Cross section of the torus or pipe. The interior of the. P . o
pipe,r<ry, is filled with a liquid (sodium of electrical conductiv- is a Laplacian-type operator. Equatiof$ and(8) are writ

ity oy ; the solid shelf o<r <r, (made of copperhas a conductiv- ter_lt In fa r(;(_)ndlmenlsmqal_ form: dlstzn_ces ."f[lre frr:r(]aaslurec_i n

ity osnand is itself surrounded by an electrically insulating mediym UNIS OF radiusro, VEIOCIy IS measured in unis of the fongl-

; _ tudinal velocity on the axis of the flowJ. The magnetic

(i.e., 0e=0). R A . . . . h
diffusivity #z(r) is measured in units ofy;, which intro-

duces the magnetic Reynolds number
I1l. ONE-DIMENSIONAL, TIME-INDEPENDENT

PROBLEM roU
_ RM= poprpoproU=——. (10
A. Equations Uii

Let us consider the evolution of the magnetic field in aConsequently, in our nondimensional units we haye1
given helical flow through a cylindrical, conducting pipe within the fluid and 7= w404/ @0 In the surrounding
with finite wall thicknessd=r,—r (the inner radius of the gshell.
pipe isro, the outer one is;), surrounded by an electrical  In Egs.(7) and (8) the longitudinal field componerit,
insulator; Fig. 2 shows a cross section through the pipe. Weloes not enter; onde, andb,, are known, it can be derived
adopt cylindrical coordinates (¢,z) and assume an axisym- from the solenoidality conditioV-B=0, which yields
metric helical velocity fieldv(r)=[0rw(r),v,(r)]. The
magnetic diffusivity and permeability may vary as functions _ i d
of the radius,p=n(r), w,=u/r). bz_ﬁ dr

Solutions of the kinematic dynamo problem can be repre-
sented as a superposition of individual modes with exponeninote thatk#0 for all growing modes
tial growth. Because the coefficients in the equations depend The shellry<r<r, can be treated as a special case of the
onr only, we are looking for solutions in the form of propa- above. In fact, in this case=v,=0, and the solution of
gating helical waves Egs.(7) and(8) is well known and is given by

m
b, (11)

(rbr)_ W

B(ry(pazvt):b(r)e7t+i(m(p+k2)1 (6) briib(pzcilmil(Kr)+DiKmil(Kr)a (12)

where k= \k?+ ooy, andC. andD. are complex con-

wherey appears as an eigenvalue and is in general complext@nts determined by the boundary conditions. Héf€;)
The real part ofy determines whethe® decays (Re/<0) andK,(-) are modified Bessel .functlons, V\{hlch_are related
or grows (Rey>0). For a given mode, there exists a critical to the Bessel and Hankel functions of the first kind[g]
value Rm of the magnetic Reynolds numbét) for which o
Revy changes sign from negative to positive. The lowest In(2)=i"™J(i2), Km(2)=—im+1H%)(iZ)- (13
value of Rm is the threshold for dynamo action. For the 2
type of dynamo problem considered here, it is typically be-
tween 10 and 10Q0see Fig. 5 below for an illustration
Inserting Eq.(6) into the induction equatiofR), one gets

A straightforward approach would be to use this analytical
solution and match it to the solution in the inner region
<r, (requiring continuity of the tangential components of
the electric fielgl and to a potential field in the exteri¢see
below). However, we decided to use a simpler approach and

Vb, +i(mo+ kvz)br+va solve Egs.(7) and (8) in the full region O<r<r, for the
rdr steplike profile
. 2im 1, r<rg
=Rm Y | Db,— —-b, ||, 7 =1
7]( ' r2 <p)‘| ( ) 7](r) O'f|/0'sh, ro<r<rj. (14)
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Here, and for the one-dimensional results presented below »

we have seju,=1 everywhere.

In the insulating outer domain>r, the current density
is zero,VXB=0, and thudB can be expressed in terms of a
scalar potentiaP(r,¢,z,t),

B=-VP. (15

Solenoidality ofB leads to the potential equation
19 (7P+1(72P+(92P_O 16
rar o) T T Y (19

and due to the symmetry of the problddgr,¢,z,t) can be
written in the form

P(r,p,z,t)=p(r)e"timetka, 17
Equations(16) and (17) result in
1 m?
i e Ll (18)
r r2

The solutions of Eq(18) that are bounded far— <« have the
form

p(r)=CKpn([Kr).

The boundary conditions at=r, are obtained from the
requirement of continuity ob on the outer border of the
conducting shell. Together with Eq®), (15), (17), and(19),
this leads to

(19

b(ro) Iklry Kp([KIry)

b)) m KKy’ (20
b(ry) kry
() &

where K, (x)=dK,(x)/dx. Eliminating b,(r;) from Egs.
(11) and(21), one finally gets
K2r?

Fl+m by(ry). (22

br(r1)+r1br,(rl):_i(

The inner boundary conditions follow from the regularity of
b atr=0 and result in

b/(0)=b,(0)=0 for |[m[=1,

b;(0)=b,(0)=0 for |m|#1. (23
System(7) and(8), together with the boundary conditions
(20), (22), and (23), is a non-self-adjoint eigenvalue prob-

lem. Dynamo action implies the existence of eigenvalyes
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FIG. 3. Dependence of the critical magnetic Reynolds number
Rm, on the profile paramete¢ and the shell thicknesd. The
graphs show isolines of Rpid, &) for two conductivity ratios(a)
ogh=o0q and(b) o4,=507 . All data are for moden=1, k= 1/r,
which is close to the fastest growing mode.

B. Results

We have checked the one-dimensional numerical code by
recalculating growth rates and critical magnetic Reynolds
numbers from the literature. In particular, we have consid-
ered the case dinfinitely extendedl insulating or perfectly
conducting media surrounding the floffor these tests we
took d=0.3ry, andog,=0.01oy or og,=1000p). Using the
velocity profiles corresponding to the models in Ré&f or
Ref.[7], we reproduced the corresponding critical magnetic
Reynolds number with an accuracy of 5% or better. For the
cases with analytical solutiong,3], the accuracy of our nu-
merical results is better than 0.1%.

In Ref.[9] it was demonstrated that the radial profile of
the longitudinal velocityv, as measured in a water experi-
ment is reasonably well approximated by

cosh &) —coshiér/rg)
coshié)—1

vAr)=Uu (24)

for ¢~18. Accordingly, we will use this parametrization
throughout this paper, together with

(25

and treatU, ¢, and y as free parameters. One advantage of
profile (24) is that it provides a smooth interpolation between
the laminar Poiseuille solutioffor £&—0) and rigid-body
motion (for £&— ). The latter limit corresponds to Ponomar-
enko’s model; in practice, fof=100, d=5rq, andog=1,

the critical Reynolds number differs from Ponomarenko’s so-
lution by less than 0.1%.

The threshold for dynamo action depends on the conduc-
tivity and the thickness of the shell and on the velocity pro-
file. In Fig. 3 we show the dependence of the critical mag-
netic Reynolds number Rpmon the shell thicknesd and the
velocity profile parameteé for a mode that is close to the
easiest excitable one. In the first cdbey. 3(a)] the conduc-
tivities of the fluid and shell are equal, in the second case

with Rey>0. To obtain numerically the eigenvalues and[Fig. 3(b)] the shell conductivity is five times higher than
eigenfunctions, we replace the derivatives by their finitethat of the fluid, which approximately corresponds to the
difference counterparts, using 200—800 grid points for thiscombination Ng, /Cu.

discretization. The resulting matrix eigenvalue problem is For the caserg,/o=1 shown in Fig. 83), the qualitative
solved using the QR algorithm. dependence of the dynamo threshold on the profile parameter
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TABLE I. Parameters and results for the different numerical calculations presented in Sec. V. Parameters
common to all models are as follows. Torus radRis 0.4 m(resulting in a cylinder length,~2.5 m), pipe
radiusr,=0.12 m, outer shell radius,=0.16 m, initial angular velocity of the toru®efore braking Q,
=310 s}, and the magnetic diffusivitieg,=0.016 nt/s, 7.,.= 0.4 nt/s. T, denotes the braking time. The
amplification factord",¢; and T 4 @re defined in Eq929).

Label 7q (M?/s) Initial field Ty (8) I et I max

Run 1 0.08 Random 0.1 87 HA0°
Run 1b 0.08 k=Kkj 0.1 1.2<10° 2.1x10*
Run 2 0.04 Random 0.1 64810* 1.0x10°
Run 3 0.08 Random 0.2 <1 1.9x 107
Run 4 0.04 Random 0.2 860 xao

¢ is different for different values of the wall thickness. In the principle, work for the planned dynamo apparatus, which has
limit of a thin wall (d—0), Rm, increases monotonically an outer(torus radiusR=0.4 m and an innefpipe) radius
with £. This is explained by the decreasing capability of thery,=0.12 m. To make quantitative predictions, however, the
shell to “anchor” magnetic field lines, which can partially be longitudinal dependence of the velocity field needs to be
compensated by a wider shear region in the fluid, but betaken into account, since only after a time comparable to the
comes vital as the flow approaches rigid-body motion forbraking time will all of the fluid be in helical motion and
large . For a thicker shell, we find a very shallow minimum thus be able to generate magnetic fiedde, e.g., Fig.)7 In
of Rm, (§). this section, we present results for this time- ardependent
For the case of a highly conducting shelty,=50y,  flow, obtained with a three-dimensional MHD code. We still
shown in Fig. 8b), the situation is somewhat different. s make the approximation ofperiodig cylindrical geometry
increases and thus approaches rigid motion, the threshold and assume the velocity to be a given functiom,af, andt.
decreases, because now anchoring of the field lines is alwayide problem addressed now is thus a three-dimensional ki-
given (for the valuesd=0.1r, considered heje and the nematic dynamo problem with space- and time-dependent
shearing of field lines is maximized by approaching the disvelocity.
continuous velocity profile. For fixed>7, the Rm (d) The equation we are solving is the induction equation in
curve possesses a minimumadat0.3—0.4. Thus for the ex- the form
perimentally interesting value$~10-20, there is an opti-

mal thicknessd of the conducting shell. % _ _ :
Detailed investigation of the linear dynamo problem in ot =VXB=ppopd +0VV A
Ref.[9] has shown that in an optimal experimental setup the )
electric conductivity of the shell should indeed be approxi- =(V+pVInu) XB+ nVA—(5n—10)VV-A
mately five times larger than that of the liquid sodium. Pro- (26)

vided the shell is thicker than about 15-20% of the inner

torus radiug o, the actual shell thickness has little effect on for the magnetic vector potenti#, from which the mag-
the excitation properties of the magnetic field. For mechaninetic flux densityB and the electric current densifyare
cal reasons, the shell should be kept tfabout 10% of the derived as B=V XA, and j=VX(B/uou)=(VXB
inner torus radius but for the numerical methods applied in —V In x,XB)/ wop,. Equation (26) corresponds to the
this paper, it is more convenient to consider a slightly thickergauge in which the vector potentiadl and the scalafelec-

shell (typically about 30% of the inner radius tric) potential® are related by
All these results were derived fof,,= 0, i.e., an external
insulator surrounding the shell, which corresponds well to 7oV -A+®=0, (27)

the experimental setup. In the three-dimensional simulations

presented in Sec. IV, however, we can only approximate sucWhere the constant parametgg (introduced for purely nu-
an insulator by settingr., to a low but finite value. A dis- Mmerical reasonsis arbitrary and was chosen equal to the
cussion of the error involved by this approximation will be magnetic diffusivity 74 of the fluid.

given in Sec. IV A. As before, we use parametrizatio(®4) and (25) for the
radial profiles ofv, andw, wherey is either 1(in Sec. IV A
IV THREE-DIMENSIONAL MODELS or zdependent and is determined from a more sophisticated

model (Sec. IV B). All dimensional results in this section
If the velocity field is time dependent, Eq®) and(3) can  refer to the fiducial experimental apparaf@$ with the pa-
no longer be reduced to an eigenvalue problem, and we ammeters given in Table |.
faced with a Cauchy problem for the time evolution of the  For numerical reasons we have smoothed the radial pro-
magnetic field. Numerical solutions of this problem for thefile of magnetic diffusivity 5(r); the resulting profile is
case ofzindependent velocity fields have been presented irshown in Fig. 4; the ratioyg,/ 7y is equal to 0.2. We embed
Ref. [9] and demonstrate that the screw dynamo should, ithe cylinder in a region of enhanced magnetic diffusivity;
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FIG. 4. Radial profile of magnetic diffusivity as used in the Rm
numerical calculations for the resolutigix=0.011 m. The region
0=<r<r, corresponds to the fluid,<r<r, defines the shell, and FIG. 5. Kinematic growth rate Re as a function of magnetic

r>r, represents a poorly conducting medium surrounding the shellReynolds number ford/r,=0.333. Solid line: one-dimensional

Note that for the tests atx=0.0056 m, the profile was steeper and model with 200 radial points. Diamonds®() and asteriskg*):
more step-function-like. values obtained with the three-dimensional code at resolution
=6y=0.011 andéx= 8y=0.0056, respectively. The longitudinal

while an insulating medium corresponds #4e= and very wave.number ik=ks; in all cases, i.e., the qugitudinal extent of
large values of magnetic diffusivity are thus desirable, nu_the plpe is three wavelengths_ of the magnetic mode. The second
merical requirements limit the values gfstrongly. We find abscissa shows the velocity in an apparatus characterized, by
that 7e,q= 574 still results in tolerable time steps, while pro- = 0-12 M. 7=0.08 nt/s.
viding already a good approximation to the case of a surmagnetic modes will have wave numbeéts=nk;, which
rounding insulatoxcf. Sec. IV A). are multiples ofk;=2#/L,. However, in many cases one
We use a numerical scheme that is of sixth order in spacean clearly count the numberof reversals oB, along the
and perform third-order explicit time stepping. Despite thecylinder, and we will identify this numben with a corre-
cylindrical geometry, we use a Cartesian grid, which avoidssponding wave numbeg,. The azimuthal wave number of
the special treatment the axis would otherwise require. Thany relevant mode isn==*1 (except for Sec. IV ¢ for
same approach was used with a similar code in Refl to  clarity, we will refer only tom=+1.
model nonlinear screw-dynamo action in spiral Couette flow.
Our boundary conditions are periodic in the vertical direction A. Steady velocities
(corresponding to the model employed in Sec).llh the To test the code and to get an estimate of the error intro-
horizontal direction, on the Cartesian boundaries of the highduced by the approximations discussed ab(amely the
diffusivity region, we require the magnetic field to be normal approximation of the surrounding insulator by a region of
to the boundaries, enhanced magnetic diffusivity, and the smoothed radjial
profile as shown in Fig. ¥ we have compared results of the
d three-dimensional code with those from the eigenvalue prob-
A =0, - A=0, (28)  lem in Sec. Il for steady flows.
Figure 5 shows the growth rate Reof the magnetic field

where L and|l indicate the directions normal and parallel to _obtalned by the three-dimensional cddeamonds and aster-

the boundary, and/dn denotes the normal derivative. Con- isks) asa function of Rm. The data_ points are in_ good agree-
ditions (28) imply the absence of currents across the bound-ment W'th the reference curve, which was obtained with the
one-dimensional code and has an estimated erret b¥o.

aries which makes it a qualitative local approximation to the The validity of approximating the insulating exterior re-

case of a surrounding insulator. . L . g
We start with a smoothed random magnetic field. By this?'O" by & low-conductivity medium can be explicitly as-

we mean that the vector potential is set to a zero—correlateﬁi?nssgr gomiSF'SgHO%nvgge;iut:;ig:téal /magnigcinl:siﬁl); r_10|ds
random field in all grid points withim<ry and to zero oth- " sh! Text-

erwise; we then let the magnetic field diffuse for a fraction'®" 'S represented by the limity,/ore,—<e. Itis evident that

e . . osnl oe= 25 results in a generation threshold quite close to
~0.2 of the diffusion timerg/ 7, which reduces the ampli- . :

) . . that for o¢,—0, and the agreement is particularly good for
tude of the high-wave-number modesghich decay quickly _ e :

. ; : osn=50y. This is intuitively clear because the magnetic
anyway and causes the field to slightly gxtend into the She"field is located around the interface between the liquid and
and, very Weakly, |nto. the extern.al' medium. .__the shell, with low amplitude at the outer shell surface.

For the following discussion, it is helpful to characterize
the modes by their longitudinal wave numbler Strictly
speaking, this is only appropriate faiindependent velocity
fields such as the tests given in Sec. IV A or towards the end Having confirmed the accuracy of our numerical code for
of the dynamical calculations. In these cases, individuathe case of constant velocities, we are now in a position to

B. Dynamo action in a time-dependent helical flow
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60 ing the angular velocity upstream of the diverter for any

while the optimistic model corresponds to using the down-
stream valud9]. For 0<t<T,=0.1 s, the initial field de-
cays towards a simpler structuflarger scales During the
time interval 0.1 s:t<0.2 s, the resulting mode is restruc-
tured into m=1, k=ks, which is eventually the fastest
growing mode. We can define the net and maximum ampli-
fication factors as

maxB, 1) maxB,; 1)
t t

50

30
Gsh/ Cext

10 20

r (29

B nd0) ™ MinBodt)
FIG. 6. Generation threshold Rmas a function of the conduc- !

tivity ratio og,/0ey as obtained with the one-dimensional model

described in Sec. Ill. The solid lines are fog,= oy, the dashed

line for og=50y. Thin lines correspond to a thin shelld (

=0.15), thick lines to a thicker shelld=0.3). All values are

for £=10.

The corresponding values for run 1 dig,=87, I ,,,=4.4
X 10° (see Table)l

The geometrical evolution of the magnetic field structure
is illustrated in Fig. 9, where isosurfaces of the magnetic flux
density|B| are shown at eight different times. Note how the
investigate the problem for a time- amdlependent velocity initial modem=1, k=0 (the slowest decaying mode with
field. We consider only the case of one single diverter in thevanishing vertical net magnetic flusb,,=[B,dx dy in a
channel, because it turns out that additional diverters, whil@onhelical flow is transformed intk=Kk; and eventuallyk
shortening the transition time after which the flow is fully =ks.
helical, have a negative impact on the maximum flow veloc- Given that modes with different vertical wave numbkrs
ity and accelerate the decay of velociti(t). The net effect evolve approximately independent from each otlserce the
of increasing the number of diverters has always been fountlow always has some dependence, there is some mixing
to be unfavorable for the dynamo. between the modes, howeyett is not surprising that field

We take the longitudinal velocity,(r,t) and angular ve- k=Kk;, which is dominant at=0.15, does not provide a
locity w(r,z,t) from the hydrodynamical model described in good seed field for the later growth of the final mokie
Ref.[9], together with the radial dependend@d) and (25). =k,. This highlights the importance of the initial field con-
At the diverter position, we slightly smooth the velocity field figuration for the net growth of the magnetic field strength
to avoid discontinuities. We first consider a short brakingduring the experiment. To further investigate the situation,
time of T,=0.1 s. Figure 7 shows the time dependence, of we show in Fig. 8) the growth curve from a different simu-
andw on the axis. The maximum angular velocity is reachedation run 1b, with identical parameters, but using as initial
only after the end of the braking phase and the rotating zongeld the final field(att=1.5 s) from run 1. During the first
needs an additiona+0.05 s to fill the whole torus. 0.15 s, the field decays, since the flow is not helical every-

Figure 8a) shows the time dependence of the root-meanwhere. Aftert=0.15 s, modek=k; grows by a factor of
square magnetic field for run 1, compared to the “optimis-2.1x 10 (maximum growth, and the net growth is 1.2
tic” and “pessimistic” extrapolations from longitudinally x10°. Thus, the choice of the initial field can have a dra-
uniform models: the pessimistic model is obtained by adoptmatic effect on the amplification factors.

100 T T ] 8007 T T T ‘ T
r 0 —:140 — t=8'8§
o - = ro 1 1=0.
80 S 4120 r --- =010
: To®he ] 600F | =012 |
- [ - 100 ; —--— 1=0.16
£ oo ] P e
s HING 180 & b a00f, —— .
< N ] P R S~
o 4001 s, J60 ~ ~
r N ] T
! e - ~ Sl
20 | || S _40 200 \\\ \\\ -
Js T ] L . -
] 420 3 S~ o
0 /' i :O F T~
L L 1 0 tgeege. L [l R
0.0 0.5 1.0 1.5 0.0 0.5 1.0 1.5 2.0 2.5
t[s] z [m]

FIG. 7. Evolution of the velocity structure with time. The braking timeTjs=0.1, and only one diverter is used. Left: velocity as a
function of time. The three curves represent the longitudinal velocity on theldxis,,(r =0) (solid line), and the angular velocity on the
axis (multiplied by rg), row(r=0), downstream and upstream of the divel@ashed and dash-dotted line, respectiveRight: angular
velocity w(r=0) along the cylinder for different times.
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Run 1 Run 1b
......... optimistic
4| | — z-dependent .
10 isti
---- pessimistic
s g
2 g
< 2
S -
N Q
Y I I optimistic
1072k zfdepe_nd,ent 7
---- pessimistic
- o5 0 15 0.0 0.5 1.0 1.5

t[s] t[s]

FIG. 8. Root-mean-square magnetic flux density as a function of time for three-dimensional models. For comparison with the full model
(labeledz-dependent the results of twa-independent simulation®@ptimistic and pessimistiare also shown. The spatial resolution here
and for all following graphs isSx= 8y=0.011, 6z=0.084. (a) Run 1 (starting with a random fie)d (b) Run 1b, starting with a cleak
=ksz mode.

C. Enhanced magnetic permeability fixed to their previous valugsProfile u,(r) was a smoothed
For a paramagnetic or ferromagnetic fluid, the magnetictep profile analogous to that shown in Fig. 4, but with only
diffusivity »y is one step at=r,. Figure 10 shows that the net and maxi-
mum amplification factors are now increased by about three
1 (30) orders of magnitude. The main effect is not a faster growth
7=

of B, but rather a reduced decay of the initial field, followed
by a much prolonged growth phase. These observations can
which shows that one possible option of increasing the magbe understood from Fig. 5 as follows. Since the dependence
netic Reynolds number is to increase the relative magnetiRey(Rm) is nonmonotonic, doubling the magnetic Rey-
permeabilityu,. In an experimental setup similar to that of nolds number will not necessarily increase the growth rate,
the Perm experiment, where there are no movable partsut, in fact, reduce it if Rre40. On the other hand, the
within the fluid, such an enhancement @f can be safely critical flow speedcorresponding to Rr21) is two times
achieved by adding ferromagnetic particles to the fluid. Di-lower than foru, 3= 1, and hence the flow is supercritical for
rect measurements of the effective permeability of two-phasa much longer time span.
liquids indicate thaj, can be at most2 if reasonable flow The fourth line in Fig. 10 shows an artificizldependent
properties are to be maintaingti7]. run, where the paramagnetic pumping veloaftywas set to

To assess the consequences of such an increase in Rm, wero; this would correspond to the case whejes reduced
have carried out as nu2 a simulation withu,3=2, which by enhancingoy, rather thanu,q. The comparison shows
implies a two times lower value afy (while 7g,and 7 are  that the pumping term is indeed important for the field

MoMrfiOH

FIG. 9. Structure of the magnetic field for different times of run 1. From left to right, the times are 0.0, 0.05, 0.1, 0.15, 0.2, 0.3, 0.4, and
0.5s; the braking time i§,=0.1 s. The surfaces are isosurfaces of the magnetic field strémgthB,>0; blue,B,<0); the lines are
magnetic field lines. The diverter is located at the bottom and the flow is directed upwards.
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Run 2 ‘optimistic’

g
8
2
=
S
2 [N optimistic
102k —— z-dependent i
---- pessimistic
—-= 1O par. ‘pumping’

3 4

2
t[s]

FIG. 10. Same as Fig. 8, but for run 2, i.e., for a two times lower
magnetic diffusivity (achieved by enhancing the magnetic perme-
ability to ue=2). Note the different time interval plotted and ac-
cordingly the much longer growth phase compared to run 1. The
fourth line (—- - -) shows the results for a model where the “para-
magnetic pumping” velocity/,, was artificially set to zero.

growth, since without it the net growth would be reduced to
about 3400.

Another interesting finding is that for run 2 the rms mag-
netic field for the full model is no longer contained in the
interval spanned by the optimistic and the pessimistic vari-
ants. Rather, the rms field for the pessimistic run overtakes Run 2 “pessimistic’
the z-dependent one and closely approaches even the opti- '
mistic run. This unexpected behavior is connected to the
presence of several growing modes and can be understood by
a closer look at the modal structure of the solutions. In Fig.
11 we show the time evolution of individual modes identified
by their vertical wave numbek. Strictly speaking, only for
z-independent velocity profile§.e., for the optimistic and
pessimistic mode)seach dynamo mode will be characterized
by a unique value ok (together with the azimuthal wave
numberm and a radial ong but spectral analysis for the
direction is a very helpful tool even if this condition is not
satisfied.

As can be seen from Fig. 11, in the optimistic model [, 11. Evolution of Fourier modes for run 2a) Optimistic
modek=k; (and m=1) dominates, while for the full and model; (b) full model; (c) pessimistic model. Shown is the energy
pessimistic modelk=k, (and m=1) is the dominating E, , of the modes normalized such that the valu¢=a0 is 1. The
mode. For most of the time, the growth rate of the mdkles oscillations of the mod&=k; in the second plot are connected to a
andk, are comparable, which indicates that a wave numbechange in the radial structure, i.e., most probably due to different
betweenk; andk, would be optimal, but is excluded by the radial modes.
geometrical setup. Other growing modes inclidek;, m o . )
=2, which was never encountered for run 1, where the mag8imilar behavior aftet~0.3 s. Although the same effect will
netic Reynolds number was two times lower. occur for =1, too, the resulting energy loss from the

Since the magnetic diffusion timé/n=0.36 s is at least dommatmg _mode W|_II be weaker there, pecause the shorter
comparable to the evolution time of the flow, the growth of Magnetic diffusion time allows the leading mode to better
the modes is never just determined by the growth rate for th@diust to thez dependence of the velocity field.
current value of Rm, but rather involves the history of the, AS @ result of these effects, drawing conclusions for the
given mode. For the fullz-dependent model, an additional full problem frc_)m the S|mple_ pessimistic and optimistic mod-
important factor is the action of the diverter, which for all €!S can be quite problematic.
times (but particularly during the first 0.2) sntroduces az
dependence of the velocity field and thus mixes energy from
the dominating mod&=k, into other modes. This is the To assess the effect of a longer braking phase, we have
reason why in Fig. 1b) the different modes show a quite carried out calculations witfi,=0.2 s; the results are shown

¢
1010

D. Slower braking of the torus
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Run 3 V. CONCLUSION
......... optimistic 1 The results presented here confirm earlier estimates ac-
1041 — Z;ggfnﬁig?igm - cording to which the planned Perm dynamo experiment is
P realistic and will be able to yield field amplification factors

of about 18 or more. A thin, highly conducting shell is cru-
cial for the dynamo process and its role is well understood.

Short braking times are necessary for the dynamo, and a
time of T,=0.1 s as is intended for the Perm experiméit
will be sufficient.

Enhancing the magnetic permeability by adding ferro-
magnetic particles to the liquid sodium would further en-
hance the amplification factor, but this is not crucial for the
0.0 0.5 1.0 15 success of the experiment. For a longer braking time

1[s] =0.2 s, however, enhancing, is required to obtain net
growth of the field at all. The enhanced magnetic Reynolds
numbers forw,= 2 cause a number of modes to gromhich
complicates the analygisand enhances the interaction of
different modes due to the inhomogeneity introduced by the
diverter.

The final amplification factor strongly depends on the ini-
tial magnetic field configuration, and choosing a suitable
seed field can be vital for obtaining good results. For ex-
ample, relying on the terrestrial background field may be a
] bad choice, as a uniform field penetrating a torus has only
Y I optimistic componentsn=0, k==*k,;, andm=1, k=0 while a good
1o % Gependent | 7 seed field should have a significant amount of energy in the

i P T optimal modem=1, k=Kkj. A sophisticated arrangement of
0 ] 5 3 4 small permanent magnets may be able to provide such a
t[s] field, but one should even consider an arrangement of coils

FIG. 12. Same as Fig. 8, but for different parametéasLike that aIIovys for a net current thrOL_Jgh the inner part.of the

run 1, but with a longer braking tim&,=0.2 (run 3. (b) Same as torus. This question certainly requires more detailed investi-

run 2, but with a longer braking tim&,=0.2 (run 4). gations.

B, /B (0)

B, ()/B,,(0)
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