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Screw dynamo in a time-dependent pipe flow
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The kinematic dynamo problem is investigated for the flow of a conducting fluid in a cylindrical, periodic
tube with conducting walls. The methods used are an eigenvalue analysis of the steady regime, and the
three-dimensional solution of the time-dependent induction equation. The configuration and parameters con-
sidered here are close to those of a dynamo experiment planned in Perm, which will use a torus-shaped
channel. We find growth of an initial magnetic field by more than three orders of magnitude. A marked field
growth can be obtained if the braking time is less than 0.2 s and only one diverter is used in the channel. The
structure of the seed field has a strong impact on the field amplification factor. Generation properties can be
improved by adding ferromagnetic particles to the fluid in order to increase its relative permeability, but this
will not be necessary for the success of the dynamo experiment. For higher magnetic Reynolds numbers, the
nontrivial evolution of different magnetic modes limits the value of simple ‘‘optimistic’’ and ‘‘pessimistic’’
estimates.
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I. INTRODUCTION

The screw dynamo is a simple dynamo model that
been extensively studied in dynamo theory. It is based on
idea due to Lortz@1# and Ponomarenko@2#, according to
which magnetic field can be generated by the helical mo
of a rigid, electrically conducting cylinder of infinite lengt
through an infinitely extended medium of equal conductiv
This problem implies a simple velocity field and leads to
critical magnetic Reynolds number as low as@3#

Rm5
Ur 0

h
517.7, ~1!

whereU is the ~constant! longitudinal velocity of the cylin-
der, r 0 is its radius, andh is the magnetic diffusivity. This
dynamo model has a discontinuous velocity profile, and w
be referred to as the ‘‘Ponomarenko dynamo.’’ More realis
models of the screw dynamo, involving continuous and
drodynamically realistic velocity fields, were considered
several authors. References@4,5# develop a very accurat
asymptotic theory for the screw dynamo in smooth flow
which has been complemented by numerical simulations@6#.
In Ref. @7#, this theory is applied to a number of realist
flows. Reference@8# extended the numerical analysis
flows fluctuating in time. Other time dependent screw d
namo models were presented in Ref.@9# in connection with
the Perm dynamo experiment. Reference@10# has put the
screw dynamo into a larger context of slow dynamo mec
nisms and Ref.@11# has generalized the concept to nona
symmetric flows. The nonlinear behavior of the screw d
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namo for spiral Couette flow has been investigated w
asymptotic methods in Ref.@12# and numerically in Ref.
@13#.

We are interested in the screw dynamo problem in
context of a new experimental dynamo project@9#. The basic
idea of this project, introduced in Ref.@14#, is to realize the
dynamo effect in a strongly time-dependent helical flow. T
flow is generated in a quickly rotating toroidal channel af
abrupt braking, and is shown, for a water experiment, in F
1. This application raises new questions concerning
screw dynamo, which have not been addressed in prev
studies. In particular, the flow of the conducting fluid will b
located in aclosedchannel and will be supercritical during
short time interval only. This requires the solution of th

FIG. 1. Photograph of a water experiment showing streamli
in an initially spinning torus after abrupt braking. The white obje
in the channel is thediverter, a kind of a fixed ship screw tha
makes the motion strongly helical. From Ref.@9#.
©2003 The American Physical Society09-1
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induction equation for three-dimensional geometry in a tim
dependent flow. Moreover, in order to understand the sat
tion of the magnetic field~if it occurs during the experiment!,
one has to investigate the time evolution of the fully nonl
ear magnetohydrodynamics~MHD! equations. The experi
mental scheme also requires strong optimization of the ch
nel ~minimization of its mass under optimal conductivity an
wall thickness!.

In this paper we investigate the screw dynamo in a tim
dependent flow using two different methods, which allo
different questions to be addressed. First, the analysis o
eigenvalue problem related to the case of a steady velo
field gives insight into the full spectral structure and is n
merically the most efficient approach. Our second metho
numerical solution of the three-dimensional, space- a
time-dependent problem—is numerically much more
manding, but it allows us to investigate the full thre
dimensional structure and is the only approach that has
perspective of tackling the nonlinear problem. While the
nal goal is to solve the fully nonlinear problem and to i
clude all geometrical and dynamical effects, the present
per only discusses the linear phase of magnetic field gro
in ~periodic! cylindrical geometry.

Most laboratory dynamo projects use liquid sodium
conducting fluid, which has a magnetic Prandtl number
5n/h'1025. This means that, in order to achieve the cr
cal magnetic Reynolds number of a few tens, one operate
kinematic Reynolds number of order 106–107, which is far
beyond what can be numerically simulated even on the la
est computers. Thus, we cannot solve the dynamical pa
the problem consistently and in the current paper just
mean velocity profiles as inferred from experiments.

The structure of the paper is as follows. Section II spe
fies the equations and geometry of the problem addre
here. In Sec. III we present numerical solutions of the ind
tion equation for prescribed, steady velocity profiles simi
to those found in cylindrical pipes. If the velocity field
axisymmetric and identical in any cross section through
cylinder, the problem can be reduced to a one-dimensio
eigenvalue problem that is solved numerically by discreti
tion. This approach is sufficiently efficient to allow us
scan the space of relevant parameters and to isolate the
that will be most favorable for the realization of the expe
ment. Section IV presents results obtained with a thr
dimensional MHD code solving the induction problem for
velocity field that varies in space and time. We finally dra
some conclusions about the realizability of the planned
namo experiment in Sec. V.

II. FORMULATION OF THE PROBLEM

The proposed Perm dynamo experiment@14# will imple-
ment a helical, strongly time-dependent flow of liquid s
dium (Na(l) ) through a torus, surrounded by a thin shell
copper ~Cu!, the electrical conductivity of which is abou
five times higher than that of liquid sodium. The role of th
conducting shell is to ‘‘anchor’’ the magnetic field lines
the exterior frame, so that the shear due to the velocity
05630
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ference between flow and exterior can enhance the magn
field.

Mathematically, dynamo action is characterized by t
presence of growing solutionsB(x,t) of the induction equa-
tion

]B

]t
5“3@~v1h“ ln m r!3B2h“3B#, ~2!

satisfying the solenoidality condition

“•B50. ~3!

Here B denotes the magnetic flux density,v is the velocity
field, m0 andm r are the magnetic vacuum permeability a
the relative magnetic permeability of the medium, andh is
the magnetic diffusivity of the fluid, related to the electric
conductivity s by h5(m0m rs)21. The termh“ ln mr[Vp
arises if the relative magnetic permeability is a function
position and gives rise to what we call ‘‘paramagnetic pum
ing’’ ~with an effective velocityVp) of magnetic flux into the
regions of enhanced permeability. A self-consistent desc
tion would also include the Navier-Stokes equation

]v

]t
52~v•“ !v2

“ p

%
1

j3B

%
1nDv, ~4!

together with the condition

“•v50 ~5!

for an incompressible fluid. Herep denotes pressure,% de-
notes density,j[“3(B/m0m r) is the electric current den
sity, andn is the kinematic viscosity. The equations give
above are complemented by boundary conditions describ
the properties of the walls~see Ref.@14#!.

In the present paper, we restrict ourselves to thekinematic
dynamo problem, i.e., we consider only Eqs.~2! and ~3!,
using a given solenoidal velocity fieldv(x,t) and neglect the
magnetic back reaction through the Lorentz force. This le
to a linear problem inB and is very helpful to understand th
evolution for weak and moderately strong magnetic fiel
This approach will allow for optimization of the experimen
tal apparatus in many respects since the kinematic growt
B over several orders of magnitude is necessary for the
cess of the experiment.

The turbulent flow of a conducting medium will give ris
to turbulent induction effects, which can be estimated
mean-field theory. In the present paper, we neglect these
tra terms in the induction equation~2! and refer the reader to
the discussion in Ref.@15#.

While the curvature of the pipe can be expected to pla
role for the geometry of the experiment~the ratio of outer
radiusR to inner radiusr 0 of the torus being about 3!, we
currently neglect it by considering a cylindrical pipe inste
of a torus. Connecting the two ends of the cylinder by pe
odic boundary conditions and setting its lengthLz52pR,
we obtain a reasonable first approximation to torus geome
9-2
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SCREW DYNAMO IN A TIME-DEPENDENT PIPE FLOW PHYSICAL REVIEW E67, 056309 ~2003!
III. ONE-DIMENSIONAL, TIME-INDEPENDENT
PROBLEM

A. Equations

Let us consider the evolution of the magnetic field in
given helical flow through a cylindrical, conducting pip
with finite wall thicknessd5r 12r 0 ~the inner radius of the
pipe is r 0, the outer one isr 1), surrounded by an electrica
insulator; Fig. 2 shows a cross section through the pipe.
adopt cylindrical coordinates (r ,w,z) and assume an axisym
metric helical velocity fieldv(r )5@0,rv(r ),vz(r )#. The
magnetic diffusivity and permeability may vary as functio
of the radius,h5h(r ), m r5m r(r ).

Solutions of the kinematic dynamo problem can be rep
sented as a superposition of individual modes with expon
tial growth. Because the coefficients in the equations dep
on r only, we are looking for solutions in the form of propa
gating helical waves

B~r ,w,z,t !5b~r !egt1 i (mw1kz), ~6!

whereg appears as an eigenvalue and is in general comp
The real part ofg determines whetherB decays (Reg,0)
or grows (Reg.0). For a given mode, there exists a critic
value Rm* of the magnetic Reynolds number~1! for which
Reg changes sign from negative to positive. The low
value of Rm* is the threshold for dynamo action. For th
type of dynamo problem considered here, it is typically b
tween 10 and 100~see Fig. 5 below for an illustration!.

Inserting Eq.~6! into the induction equation~2!, one gets

gbr1 i ~mv1kvz!br1Vp

d~rbr !

r dr

5Rm21FhS D̂br2
2im

r 2
bwD G , ~7!

FIG. 2. Cross section of the torus or pipe. The interior of t
pipe, r ,r 0, is filled with a liquid ~sodium! of electrical conductiv-
ity sfl ; the solid shellr 0,r ,r 1 ~made of copper! has a conductiv-
ity ssh and is itself surrounded by an electrically insulating mediu
~i.e., sext50).
05630
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gbw1 i ~mv1kvz!bw1
d~Vpbw!

dr

5r
dv

dr
br1Rm21FhS D̂bw1

2im

r 2
br D

1
dh

dr S d~rbw!

r dr
2

im

r
br D G , ~8!

whereVp5hd ln mr /dr and

D̂[
1

r

d

dr S r
d

dr D2
m211

r 2
2k2 ~9!

is a Laplacian-type operator. Equations~7! and ~8! are writ-
ten in a nondimensional form: distances are measured
units of radiusr 0, velocity is measured in units of the long
tudinal velocity on the axis of the flow,U. The magnetic
diffusivity h(r ) is measured in units ofhfl , which intro-
duces the magnetic Reynolds number

Rm[m0m r,flsflr 0U5
r 0U

hfl
. ~10!

Consequently, in our nondimensional units we haveh51
within the fluid andh5m r,flsfl /m r,shssh in the surrounding
shell.

In Eqs. ~7! and ~8! the longitudinal field componentbz
does not enter; oncebr andbw are known, it can be derived
from the solenoidality condition“•B50, which yields

bz5
i

kr

d

dr
~rbr !2

m

kr
bw ~11!

~note thatkÞ0 for all growing modes!.
The shellr 0,r ,r 1 can be treated as a special case of

above. In fact, in this casev5vz50, and the solution of
Eqs.~7! and ~8! is well known and is given by

br6 ibw5C6I m61~kr !1D6Km61~kr !, ~12!

wherek5Ak21m0sg, and C6 and D6 are complex con-
stants determined by the boundary conditions. Here,I m(•)
andKm(•) are modified Bessel functions, which are relat
to the Bessel and Hankel functions of the first kind by@16#

I m~z!5 i 2mJm~ iz!, Km~z!5
p

2
i m11Hm

(1)~ iz!. ~13!

A straightforward approach would be to use this analyti
solution and match it to the solution in the inner regionr
,r 0 ~requiring continuity of the tangential components
the electric field! and to a potential field in the exterior~see
below!. However, we decided to use a simpler approach
solve Eqs.~7! and ~8! in the full region 0,r ,r 1 for the
steplike profile

h~r !5H 1, r ,r 0

sfl /ssh, r 0,r ,r 1 .
~14!
9-3



lo

a

of

s
-

s
nd
te
hi
i

by
lds
id-

tic
the

of
i-

n

of
en

r-

so-

uc-
ro-
g-

e

se
n
he

eter

ber

DOBLER, FRICK, AND STEPANOV PHYSICAL REVIEW E67, 056309 ~2003!
Here, and for the one-dimensional results presented be
we have setm r51 everywhere.

In the insulating outer domainr .r 1, the current density
is zero,“3B50, and thusB can be expressed in terms of
scalar potentialP(r ,w,z,t),

B52“P. ~15!

Solenoidality ofB leads to the potential equation

1

r

]

]r S r
]P

]r D1
1

r 2

]2P

]w2
1

]2P

]z2
50, ~16!

and due to the symmetry of the problemP(r ,w,z,t) can be
written in the form

P~r ,w,z,t !5p~r !egt1 i (mw1kz). ~17!

Equations~16! and ~17! result in

p91
1

r
p82S m2

r 2
1k2D p50. ~18!

The solutions of Eq.~18! that are bounded forr→` have the
form

p~r !5CKm~ ukur !. ~19!

The boundary conditions atr 5r 1 are obtained from the
requirement of continuity ofb on the outer border of the
conducting shell. Together with Eqs.~6!, ~15!, ~17!, and~19!,
this leads to

br~r 1!

bw~r 1!
52 i

ukur 1

m

Km8 ~ ukur 1!

Km~ ukur 1!
, ~20!

bz~r 1!

bw~r 1!
5

kr1

m
, ~21!

where Km8 (x)[dKm(x)/dx. Eliminating bz(r 1) from Eqs.
~11! and ~21!, one finally gets

br~r 1!1r 1br8~r 1!52 i S k2r 1
2

m
1mDbw~r 1!. ~22!

The inner boundary conditions follow from the regularity
b at r 50 and result in

br8~0!5bw8 ~0!50 for umu51,

br~0!5bw~0!50 for umuÞ1. ~23!

System~7! and~8!, together with the boundary condition
~20!, ~22!, and ~23!, is a non-self-adjoint eigenvalue prob
lem. Dynamo action implies the existence of eigenvalueg
with Reg.0. To obtain numerically the eigenvalues a
eigenfunctions, we replace the derivatives by their fini
difference counterparts, using 200–800 grid points for t
discretization. The resulting matrix eigenvalue problem
solved using the QR algorithm.
05630
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B. Results

We have checked the one-dimensional numerical code
recalculating growth rates and critical magnetic Reyno
numbers from the literature. In particular, we have cons
ered the case of~infinitely extended! insulating or perfectly
conducting media surrounding the flow~for these tests we
took d50.3r 0, andssh50.01sfl or ssh5100sfl). Using the
velocity profiles corresponding to the models in Ref.@6# or
Ref. @7#, we reproduced the corresponding critical magne
Reynolds number with an accuracy of 5% or better. For
cases with analytical solutions@2,3#, the accuracy of our nu-
merical results is better than 0.1%.

In Ref. @9# it was demonstrated that the radial profile
the longitudinal velocityvz as measured in a water exper
ment is reasonably well approximated by

vz~r !5U
cosh~j!2cosh~jr /r 0!

cosh~j!21
~24!

for j'18. Accordingly, we will use this parametrizatio
throughout this paper, together with

v~r !5x
vz~r !

r 0
, ~25!

and treatU, j, andx as free parameters. One advantage
profile ~24! is that it provides a smooth interpolation betwe
the laminar Poiseuille solution~for j→0) and rigid-body
motion ~for j→`). The latter limit corresponds to Ponoma
enko’s model; in practice, forj5100, d55r 0, andssh51,
the critical Reynolds number differs from Ponomarenko’s
lution by less than 0.1%.

The threshold for dynamo action depends on the cond
tivity and the thickness of the shell and on the velocity p
file. In Fig. 3 we show the dependence of the critical ma
netic Reynolds number Rm* on the shell thicknessd and the
velocity profile parameterj for a mode that is close to th
easiest excitable one. In the first case@Fig. 3~a!# the conduc-
tivities of the fluid and shell are equal, in the second ca
@Fig. 3~b!# the shell conductivity is five times higher tha
that of the fluid, which approximately corresponds to t
combination Na(l) /Cu.

For the casessh/sfl51 shown in Fig. 3~a!, the qualitative
dependence of the dynamo threshold on the profile param

FIG. 3. Dependence of the critical magnetic Reynolds num
Rm* on the profile parameterj and the shell thicknessd. The
graphs show isolines of Rm* (d,j) for two conductivity ratios:~a!
ssh5sfl and ~b! ssh55sfl . All data are for modem51, k51/r 0,
which is close to the fastest growing mode.
9-4
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TABLE I. Parameters and results for the different numerical calculations presented in Sec. IV. Para
common to all models are as follows. Torus radiusR50.4 m~resulting in a cylinder lengthLz'2.5 m), pipe
radiusr 050.12 m, outer shell radiusr 150.16 m, initial angular velocity of the torus~before braking! V0

5310 s21, and the magnetic diffusivitieshsh50.016 m2/s, hext50.4 m2/s. Tb denotes the braking time. Th
amplification factorsGnet andGmax are defined in Eqs.~29!.

Label hfl (m2/s) Initial field Tb (s) Gnet Gmax

Run 1 0.08 Random 0.1 87 4.43103

Run 1b 0.08 k5k3 0.1 1.23103 2.13104

Run 2 0.04 Random 0.1 6.83104 1.03106

Run 3 0.08 Random 0.2 ,1 1.93102

Run 4 0.04 Random 0.2 860 3.23104
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j is different for different values of the wall thickness. In th
limit of a thin wall (d→0), Rm* increases monotonically
with j. This is explained by the decreasing capability of t
shell to ‘‘anchor’’ magnetic field lines, which can partially b
compensated by a wider shear region in the fluid, but
comes vital as the flow approaches rigid-body motion
largej. For a thicker shell, we find a very shallow minimu
of Rm* (j).

For the case of a highly conducting shell,ssh55sfl ,
shown in Fig. 3~b!, the situation is somewhat different. Asj
increases and thusv approaches rigid motion, the thresho
decreases, because now anchoring of the field lines is alw
given ~for the valuesd>0.1r 0 considered here!, and the
shearing of field lines is maximized by approaching the d
continuous velocity profile. For fixedj.7, the Rm* (d)
curve possesses a minimum atd'0.3–0.4. Thus for the ex
perimentally interesting valuesj'10–20, there is an opti
mal thicknessd of the conducting shell.

Detailed investigation of the linear dynamo problem
Ref. @9# has shown that in an optimal experimental setup
electric conductivity of the shell should indeed be appro
mately five times larger than that of the liquid sodium. P
vided the shell is thicker than about 15–20 % of the inn
torus radiusr 0, the actual shell thickness has little effect o
the excitation properties of the magnetic field. For mecha
cal reasons, the shell should be kept thin~about 10% of the
inner torus radius!, but for the numerical methods applied
this paper, it is more convenient to consider a slightly thic
shell ~typically about 30% of the inner radius!.

All these results were derived forsext50, i.e., an externa
insulator surrounding the shell, which corresponds well
the experimental setup. In the three-dimensional simulati
presented in Sec. IV, however, we can only approximate s
an insulator by settingsext to a low but finite value. A dis-
cussion of the error involved by this approximation will b
given in Sec. IV A.

IV. THREE-DIMENSIONAL MODELS

If the velocity field is time dependent, Eqs.~2! and~3! can
no longer be reduced to an eigenvalue problem, and we
faced with a Cauchy problem for the time evolution of t
magnetic field. Numerical solutions of this problem for t
case ofz-independent velocity fields have been presented
Ref. @9# and demonstrate that the screw dynamo should
05630
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principle, work for the planned dynamo apparatus, which
an outer~torus! radiusR50.4 m and an inner~pipe! radius
r 050.12 m. To make quantitative predictions, however,
longitudinal dependence of the velocity field needs to
taken into account, since only after a time comparable to
braking time will all of the fluid be in helical motion and
thus be able to generate magnetic field~see, e.g., Fig. 7!. In
this section, we present results for this time- andz-dependent
flow, obtained with a three-dimensional MHD code. We s
make the approximation of~periodic! cylindrical geometry
and assume the velocity to be a given function ofr, z, andt.
The problem addressed now is thus a three-dimensiona
nematic dynamo problem with space- and time-depend
velocity.

The equation we are solving is the induction equation
the form

]A

]t
5v3B2hm0m rj1h0““•A

5~v1h“ ln m r!3B1h“2A2~h2h0!““•A

~26!

for the magnetic vector potentialA, from which the mag-
netic flux densityB and the electric current densityj are
derived as B5“3A, and j5“3(B/m0m r)5(“3B
2“ ln mr3B)/m0m r . Equation ~26! corresponds to the
gauge in which the vector potentialA and the scalar~elec-
tric! potentialF are related by

h0“•A1F50, ~27!

where the constant parameterh0 ~introduced for purely nu-
merical reasons! is arbitrary and was chosen equal to t
magnetic diffusivityhfl of the fluid.

As before, we use parametrizations~24! and ~25! for the
radial profiles ofvz andv, wherex is either 1~in Sec. IV A!
or z dependent and is determined from a more sophistica
model ~Sec. IV B!. All dimensional results in this section
refer to the fiducial experimental apparatus@9# with the pa-
rameters given in Table I.

For numerical reasons we have smoothed the radial
file of magnetic diffusivity h(r ); the resulting profile is
shown in Fig. 4; the ratiohsh/hfl is equal to 0.2. We embed
the cylinder in a region of enhanced magnetic diffusivi
9-5
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DOBLER, FRICK, AND STEPANOV PHYSICAL REVIEW E67, 056309 ~2003!
while an insulating medium corresponds toh5` and very
large values of magnetic diffusivity are thus desirable, n
merical requirements limit the values ofh strongly. We find
thathext55hfl still results in tolerable time steps, while pro
viding already a good approximation to the case of a s
rounding insulator~cf. Sec. IV A!.

We use a numerical scheme that is of sixth order in spa
and perform third-order explicit time stepping. Despite t
cylindrical geometry, we use a Cartesian grid, which avo
the special treatment the axis would otherwise require.
same approach was used with a similar code in Ref.@13# to
model nonlinear screw-dynamo action in spiral Couette fl
Our boundary conditions are periodic in the vertical direct
~corresponding to the model employed in Sec. III!. In the
horizontal direction, on the Cartesian boundaries of the hi
diffusivity region, we require the magnetic field to be norm
to the boundaries,

A'50,
]

]n
Ai50, ~28!

where' and i indicate the directions normal and parallel
the boundary, and]/]n denotes the normal derivative. Con
ditions ~28! imply the absence of currents across the bou
aries which makes it a qualitative local approximation to
case of a surrounding insulator.

We start with a smoothed random magnetic field. By t
we mean that the vector potential is set to a zero-correla
random field in all grid points withinr ,r 0 and to zero oth-
erwise; we then let the magnetic field diffuse for a fracti
'0.2 of the diffusion timer 0

2/hfl , which reduces the ampli
tude of the high-wave-number modes~which decay quickly
anyway! and causes the field to slightly extend into the sh
and, very weakly, into the external medium.

For the following discussion, it is helpful to characteri
the modes by their longitudinal wave numberk. Strictly
speaking, this is only appropriate forz-independent velocity
fields such as the tests given in Sec. IV A or towards the
of the dynamical calculations. In these cases, individ

FIG. 4. Radial profile of magnetic diffusivity as used in th
numerical calculations for the resolutiondx50.011 m. The region
0<r ,r 0 corresponds to the fluid,r 0,r ,r 1 defines the shell, and
r .r 1 represents a poorly conducting medium surrounding the sh
Note that for the tests atdx50.0056 m, the profile was steeper an
more step-function-like.
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magnetic modes will have wave numberskn5nk1, which
are multiples ofk1[2p/Lz . However, in many cases on
can clearly count the numbern of reversals ofBz along the
cylinder, and we will identify this numbern with a corre-
sponding wave numberkn . The azimuthal wave number o
any relevant mode ism561 ~except for Sec. IV C!; for
clarity, we will refer only tom511.

A. Steady velocities

To test the code and to get an estimate of the error in
duced by the approximations discussed above~namely the
approximation of the surrounding insulator by a region
enhanced magnetic diffusivity, and the smoothed radiah
profile as shown in Fig. 4!, we have compared results of th
three-dimensional code with those from the eigenvalue pr
lem in Sec. III for steady flows.

Figure 5 shows the growth rate Reg of the magnetic field
obtained by the three-dimensional code~diamonds and aster
isks! as a function of Rm. The data points are in good agr
ment with the reference curve, which was obtained with
one-dimensional code and has an estimated error of<1%.

The validity of approximating the insulating exterior re
gion by a low-conductivity medium can be explicitly a
sessed from Fig. 6, where the critical magnetic Reyno
number Rm* is shown as a function ofssh/sext. An insula-
tor is represented by the limitssh/sext→`. It is evident that
ssh/sext525 results in a generation threshold quite close
that for sext→0, and the agreement is particularly good f
ssh55sfl . This is intuitively clear because the magne
field is located around the interface between the liquid a
the shell, with low amplitude at the outer shell surface.

B. Dynamo action in a time-dependent helical flow

Having confirmed the accuracy of our numerical code
the case of constant velocities, we are now in a position

ll.
FIG. 5. Kinematic growth rate Reg as a function of magnetic

Reynolds number ford/r 050.333. Solid line: one-dimensiona
model with 200 radial points. Diamonds (L) and asterisks(*):
values obtained with the three-dimensional code at resolutiondx
5dy50.011 anddx5dy50.0056, respectively. The longitudina
wave number isk5k3 in all cases, i.e., the longitudinal extent o
the pipe is three wavelengths of the magnetic mode. The sec
abscissa shows the velocity in an apparatus characterized br 0

50.12 m,h50.08 m2/s.
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SCREW DYNAMO IN A TIME-DEPENDENT PIPE FLOW PHYSICAL REVIEW E67, 056309 ~2003!
investigate the problem for a time- andz-dependent velocity
field. We consider only the case of one single diverter in
channel, because it turns out that additional diverters, w
shortening the transition time after which the flow is ful
helical, have a negative impact on the maximum flow vel
ity and accelerate the decay of velocityU(t). The net effect
of increasing the number of diverters has always been fo
to be unfavorable for the dynamo.

We take the longitudinal velocityvz(r ,t) and angular ve-
locity v(r ,z,t) from the hydrodynamical model described
Ref. @9#, together with the radial dependences~24! and~25!.
At the diverter position, we slightly smooth the velocity fie
to avoid discontinuities. We first consider a short braki
time of Tb50.1 s. Figure 7 shows the time dependence ofvz
andv on the axis. The maximum angular velocity is reach
only after the end of the braking phase and the rotating z
needs an additional'0.05 s to fill the whole torus.

Figure 8~a! shows the time dependence of the root-me
square magnetic field for run 1, compared to the ‘‘optim
tic’’ and ‘‘pessimistic’’ extrapolations from longitudinally
uniform models: the pessimistic model is obtained by ado

FIG. 6. Generation threshold Rm* as a function of the conduc
tivity ratio ssh/sext as obtained with the one-dimensional mod
described in Sec. III. The solid lines are forssh5sfl , the dashed
line for ssh55sfl . Thin lines correspond to a thin shell (d
50.15r 0), thick lines to a thicker shell (d50.3r 0). All values are
for j510.
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ing the angular velocity upstream of the diverter for anyz,
while the optimistic model corresponds to using the dow
stream value@9#. For 0,t,Tb50.1 s, the initial field de-
cays towards a simpler structure~larger scales!. During the
time interval 0.1 s,t,0.2 s, the resulting mode is restru
tured into m51, k5k3, which is eventually the fastes
growing mode. We can define the net and maximum am
fication factors as

Gnet[

max
t

Brms~ t !

Brms~0!
, Gmax[

max
t

Brms~ t !

min
t

Brms~ t !
. ~29!

The corresponding values for run 1 areGnet587, Gmax54.4
3103 ~see Table I!.

The geometrical evolution of the magnetic field structu
is illustrated in Fig. 9, where isosurfaces of the magnetic fl
densityuBu are shown at eight different times. Note how th
initial mode m51, k50 ~the slowest decaying mode wit
vanishing vertical net magnetic fluxFm[*Bzdx dy in a
nonhelical flow! is transformed intok5k1 and eventuallyk
5k3.

Given that modes with different vertical wave numbersk
evolve approximately independent from each other~since the
flow always has somez dependence, there is some mixin
between the modes, however!, it is not surprising that field
k5k1, which is dominant att50.15, does not provide a
good seed field for the later growth of the final modek
5k3. This highlights the importance of the initial field con
figuration for the net growth of the magnetic field streng
during the experiment. To further investigate the situati
we show in Fig. 8~b! the growth curve from a different simu
lation run 1b, with identical parameters, but using as init
field the final field~at t51.5 s) from run 1. During the firs
0.15 s, the field decays, since the flow is not helical eve
where. After t50.15 s, modek5k3 grows by a factor of
2.13104 ~maximum growth!, and the net growth is 1.2
3103. Thus, the choice of the initial field can have a dr
matic effect on the amplification factors.

l

a
FIG. 7. Evolution of the velocity structure with time. The braking time isTb50.1, and only one diverter is used. Left: velocity as
function of time. The three curves represent the longitudinal velocity on the axis,U5vz(r 50) ~solid line!, and the angular velocity on the
axis ~multiplied by r 0), r 0v(r 50), downstream and upstream of the diverter~dashed and dash-dotted line, respectively!. Right: angular
velocity v(r 50) along the cylinder for different times.
9-7
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FIG. 8. Root-mean-square magnetic flux density as a function of time for three-dimensional models. For comparison with the fu
~labeledz-dependent!, the results of twoz-independent simulations~optimistic and pessimistic! are also shown. The spatial resolution he
and for all following graphs isdx5dy50.011,dz50.084. ~a! Run 1 ~starting with a random field!. ~b! Run 1b, starting with a cleank
5k3 mode.
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C. Enhanced magnetic permeability

For a paramagnetic or ferromagnetic fluid, the magne
diffusivity hfl is

hfl5
1

m0m r,flsfl
, ~30!

which shows that one possible option of increasing the m
netic Reynolds number is to increase the relative magn
permeabilitym r . In an experimental setup similar to that
the Perm experiment, where there are no movable p
within the fluid, such an enhancement ofm r can be safely
achieved by adding ferromagnetic particles to the fluid.
rect measurements of the effective permeability of two-ph
liquids indicate thatm r can be at most'2 if reasonable flow
properties are to be maintained@17#.

To assess the consequences of such an increase in Rm
have carried out as run 2 a simulation withm r,fl52, which
implies a two times lower value ofhfl ~while hsh andhext are
05630
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we

fixed to their previous values!. Profilem r(r ) was a smoothed
step profile analogous to that shown in Fig. 4, but with on
one step atr 5r 0. Figure 10 shows that the net and max
mum amplification factors are now increased by about th
orders of magnitude. The main effect is not a faster grow
of B, but rather a reduced decay of the initial field, followe
by a much prolonged growth phase. These observations
be understood from Fig. 5 as follows. Since the depende
Reg(Rm) is nonmonotonic, doubling the magnetic Re
nolds number will not necessarily increase the growth ra
but, in fact, reduce it if Rm*40. On the other hand, th
critical flow speed~corresponding to Rm'21) is two times
lower than form r,fl51, and hence the flow is supercritical fo
a much longer time span.

The fourth line in Fig. 10 shows an artificialz-dependent
run, where the paramagnetic pumping velocityVp was set to
zero; this would correspond to the case wherehfl is reduced
by enhancingsfl , rather thanm r,fl . The comparison shows
that the pumping term is indeed important for the fie
.4, and
FIG. 9. Structure of the magnetic field for different times of run 1. From left to right, the times are 0.0, 0.05, 0.1, 0.15, 0.2, 0.3, 0
0.5 s; the braking time isTb50.1 s. The surfaces are isosurfaces of the magnetic field strength~red, Bz.0; blue,Bz,0); the lines are
magnetic field lines. The diverter is located at the bottom and the flow is directed upwards.
9-8
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SCREW DYNAMO IN A TIME-DEPENDENT PIPE FLOW PHYSICAL REVIEW E67, 056309 ~2003!
growth, since without it the net growth would be reduced
about 3400.

Another interesting finding is that for run 2 the rms ma
netic field for the full model is no longer contained in th
interval spanned by the optimistic and the pessimistic v
ants. Rather, the rms field for the pessimistic run overta
the z-dependent one and closely approaches even the
mistic run. This unexpected behavior is connected to
presence of several growing modes and can be understoo
a closer look at the modal structure of the solutions. In F
11 we show the time evolution of individual modes identifi
by their vertical wave numberk. Strictly speaking, only for
z-independent velocity profiles~i.e., for the optimistic and
pessimistic models! each dynamo mode will be characteriz
by a unique value ofk ~together with the azimuthal wav
numberm and a radial one!, but spectral analysis for thez
direction is a very helpful tool even if this condition is n
satisfied.

As can be seen from Fig. 11, in the optimistic mod
modek5k3 ~and m51) dominates, while for the full and
pessimistic modelsk5k4 ~and m51) is the dominating
mode. For most of the time, the growth rate of the modesk3
andk4 are comparable, which indicates that a wave num
betweenk3 andk4 would be optimal, but is excluded by th
geometrical setup. Other growing modes includek5k7 , m
52, which was never encountered for run 1, where the m
netic Reynolds number was two times lower.

Since the magnetic diffusion timer 1
2/h50.36 s is at least

comparable to the evolution time of the flow, the growth
the modes is never just determined by the growth rate for
current value of Rm, but rather involves the history of t
given mode. For the full,z-dependent model, an addition
important factor is the action of the diverter, which for a
times ~but particularly during the first 0.2 s! introduces az
dependence of the velocity field and thus mixes energy fr
the dominating modek5k4 into other modes. This is the
reason why in Fig. 11~b! the different modes show a quit

FIG. 10. Same as Fig. 8, but for run 2, i.e., for a two times low
magnetic diffusivity~achieved by enhancing the magnetic perm
ability to m rel52). Note the different time interval plotted and a
cordingly the much longer growth phase compared to run 1.
fourth line ~—•••) shows the results for a model where the ‘‘par
magnetic pumping’’ velocityVp was artificially set to zero.
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similar behavior aftert'0.3 s. Although the same effect wi
occur for m r51, too, the resulting energy loss from th
dominating mode will be weaker there, because the sho
magnetic diffusion time allows the leading mode to bet
adjust to thez dependence of the velocity field.

As a result of these effects, drawing conclusions for
full problem from the simple pessimistic and optimistic mo
els can be quite problematic.

D. Slower braking of the torus

To assess the effect of a longer braking phase, we h
carried out calculations withTb50.2 s; the results are show

r
-

e

FIG. 11. Evolution of Fourier modes for run 2.~a! Optimistic
model; ~b! full model; ~c! pessimistic model. Shown is the energ
Ek,m of the modes normalized such that the value att50 is 1. The
oscillations of the modek5k3 in the second plot are connected to
change in the radial structure, i.e., most probably due to differ
radial modes.
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DOBLER, FRICK, AND STEPANOV PHYSICAL REVIEW E67, 056309 ~2003!
in Fig. 12~a! for m r51 ~run 3! and in Fig. 12~b! for m r52
~run 4!. In the case of liquid sodium without admixed ferr
magnetic particles, the maximum growth is diminished
about 100 and the net growth is less than 1, i.e., at the en
the experiment the magnetic energy is lower than it was
the seed field. Only with the enhanced valuem r52 we ob-
tain net growth, which is now larger than in run 1, but s
significantly lower than in run 2.

FIG. 12. Same as Fig. 8, but for different parameters.~a! Like
run 1, but with a longer braking timeTb50.2 ~run 3!. ~b! Same as
run 2, but with a longer braking timeTb50.2 ~run 4!.
h.

ff,
ic
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V. CONCLUSION

The results presented here confirm earlier estimates
cording to which the planned Perm dynamo experimen
realistic and will be able to yield field amplification facto
of about 103 or more. A thin, highly conducting shell is cru
cial for the dynamo process and its role is well understoo

Short braking times are necessary for the dynamo, an
time of Tb50.1 s as is intended for the Perm experiment@9#
will be sufficient.

Enhancing the magnetic permeability by adding fer
magnetic particles to the liquid sodium would further e
hance the amplification factor, but this is not crucial for t
success of the experiment. For a longer braking timeTb
50.2 s, however, enhancingm r is required to obtain ne
growth of the field at all. The enhanced magnetic Reyno
numbers form r52 cause a number of modes to grow~which
complicates the analysis!, and enhances the interaction
different modes due to the inhomogeneity introduced by
diverter.

The final amplification factor strongly depends on the i
tial magnetic field configuration, and choosing a suita
seed field can be vital for obtaining good results. For e
ample, relying on the terrestrial background field may be
bad choice, as a uniform field penetrating a torus has o
componentsm50, k56k1, andm51, k50 while a good
seed field should have a significant amount of energy in
optimal modem51, k5k3. A sophisticated arrangement o
small permanent magnets may be able to provide suc
field, but one should even consider an arrangement of c
that allows for a net current through the inner part of t
torus. This question certainly requires more detailed inve
gations.
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